Two Quinones from the Aerial Parts of Sphallerocarpus gracillis

Neng Yu CHEN*, Jun SHI, Tao CHEN

Institute of Organic Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Two new quinones were isolated from the aerial parts of *Sphallerocarpus gracillis*. Their structure were determined by spectroscopic methods (HRMS,2D NMR) and finally confirmed by X-ray crystallography.

Keywords: Quinones; Sphallerocarpus gracillis.

Sphallerocarpus gracillis (Boss) K-Pol. is the only species of the genus Sphallerocarpus, mainly distributed in northeastern and northwestern parts of China. It has been used in traditional Chinese medicine since ancient times¹. In this paper, we report the structure elucidation of two new quinones isolated from the aerial parts of Sphallerocarpus gracillis.

X-ray structure of 1

Compound 1 was obtained as brown-yellow needles, m.p. $202\text{-}204^{\circ}\text{C}$. Its HRMS showed the molecular ion peak [M⁺] at m/z=402.1680, which allowed for a $C_{22}H_{26}O_7$ molecular formula (calcd. 402.1679). The color reactions with NaOH and $(CH_3COO)_2Mg$ indicated it to be a hydroxyquinone², which was further supported by the absorption in the IR spectrum at 1686, 1646cm-1 (quinone)^{3,4} and at 3499cm⁻¹ (OH). Its ¹H NMR spectra showed the presence of four methoxy groups (δ 3.67, 3.72, 3.75, 3.78), two aromatic protons at δ 6.43 (1H, s, H-3') and δ 6.42 (1H, s, H-6'), two methyls at δ 1.13 (3H, d, J=6.0Hz, H-12) and δ 0.90 (3H, d, J=6.0Hz, H-13), an olefinic proton at 5.77 (1H, s, H-3). In the ¹³C NMR spectra of 1, there are two methyls and four methines, and

signals for a phenyl group and two quinone carbonyl carbons. The ¹H NMR and ¹³C NMR data (Table 1) were assigned by ¹H-¹H COSY, ¹³C-¹H COSY and ¹³C-¹H COLOC correlations of δH 5.77 (H-3) to δC 181.1 (C-4) and 141.6 (C-10), δH 4.44 (H-5) to δC 181.1 (C-4), 141.6 (C-10) suggesting the hydroxy is at C-5. At the same time, δH 1.13 (H-11) to δC 71.6 (C-5), 39.3 (C-6) and 41.1 (C-7) indicated two methyls are at C-6 and C-7, the phenyl is at C-8. The structure of compound 1 was finally confirmed by X-ray analysis.

Compound 2 was obtained as brown-red prism, m.p. 196-198°C. Its IR spectrum showed absorption bands at 3520cm⁻¹ (hydroxy), 1681,1654 (quinone), 1612, 1514, 1454cm⁻¹ (phenyl). The HRMS (402.1674) determined the molecular formula to be C₂₂H₂₆O₇ (calcd. 402.1679). Its ¹H NMR and ¹³C NMR spectra are very similar to those of compound 1. It was evident that there is an isopropyl group in the structure of compound 2 (supported by ¹H-¹H COSY, ¹³C-¹H COLOC). The small coupling constant of H-5 (d, J=2.4Hz) indicated that the hydroxy at C-5, and isopropyl at C-6 are cis, while the coupling constants of H-6 (ddd, J=9.8, 7.6, 2.4Hz) suggested that the isopropyl (C-6) and phenyl (C-8) are trans. Thus, the structure of compound 2 was determined.

Table 1 ¹H (400MHz) and ¹³C-NMR (100MHz) data of Compound 1 and 2 (CDCl₃, δ, ppm, TMS)

No.	¹H NMR		¹³ C NMR	
	1	2	1	2
1			190.0	187.4
2 3			158.8	158.9
3	5.77,s	5.84, s	106.8	106.5
4		, ,	181.1	182.2
4 5	4.44, dg(8.8,1.5)	4.63,d(2.4)	71.6	65.1
6	1.42m	1.85,ddd(9.8,7.6,2.4)	39.3	35.6
6 7	1.44m	1.39,m	41.1	38.6
8	3.73.overlapped	3.72.overlapped	43.2	43.2
8			141.6	141.3
10			144.0	143.6
Me	1.13,d(6.0)	1.11,d(6.8)	15.2	15.0
Me	0.90, d.(6.0)	0.92,d(6.8)	16.1	16.6
1'	***************************************		123.3	123.6
2'			151.6	151.4
2' 3'	6.43.s	6.46 . s	98.7	98.9
4'	31.12.12	0.1010	148.6	148.5
4' 5'			143.3	143.9
6'	6.42,s	6.62,s	113.9	114.2
ОМе	3.67,s 3.72,s	3.70,s 3.75,s	56.02 56.03	56.28 56.12
J.: 10	3.75,s 3.78,s	3.80,s 3.81,s	56.28 57.01	56.89 56.89

a. Coupling constants in parentheses in Hz.

Acknowledgment

This work was supported by the National Natural Science Foundation of China.

References

- 1. B. Z. Guo. "Qinhai Jingji Zhiwu Zhi", Qinhai Press, 1987, p.417.
- 2. R. H. Thomson, "Natural Occurring Quinones", Academic Press, London. 1971, p.41-67. 3. K. Seki, K. Haga, R. Kaneto, Phytochemistry, 1995, 38, 703.
- 4. S. J. Wu, Q. Z. Yang, Acta Chimica Sinica, 1980, 38, 156.

Received 12 April 1999